Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial

David C. Nieman,1,* Kevin A. Zwetsloot,2 Andrew J. Simonson,1 Andrew T. Hoyle,1 Xintang Wang,3 Heather K. Nelson,4 Catherine Lefranc-Millot,5 and Laetitia Guérin-Deremaux5

Abstract

This randomized trial compared pea protein, whey protein, and water-only supplementation on muscle damage, inflammation, delayed onset of muscle soreness (DOMS), and physical fitness test performance during a 5-day period after a 90-min eccentric exercise bout in non-athletic non-obese males (n = 92, ages 18–55 years). The two protein sources (0.9 g protein/kg divided into three doses/day) were administered under double blind procedures. The eccentric exercise protocol induced significant muscle damage and soreness, and reduced bench press and 30-s Wingate performance. Whey protein supplementation significantly attenuated post-exercise blood levels for biomarkers of muscle damage compared to water-only, with large effect sizes for creatine kinase and myoglobin during the fourth and fifth days of recovery (Cohen’s d > 0.80); pea protein versus water supplementation had an intermediate non-significant effect (Cohen’s d < 0.50); and no significant differences between whey and pea protein were found. Whey and pea protein compared to water supplementation had no significant effects on post-exercise DOMS and the fitness tests. In conclusion, high intake of whey protein for 5 days after intensive eccentric exercise mitigated the efflux of muscle damage biomarkers, with the intake of pea protein having an intermediate effect. This randomized trial compared pea protein, whey protein, and water-only supplementation on muscle damage, inflammation, delayed onset of muscle soreness (DOMS), and physical fitness test performance during a 5-day period after a 90-min eccentric exercise bout in non-athletic non-obese males (n = 92, ages 18–55 years). The two protein sources (0.9 g protein/kg divided into three doses/day) were administered under double blind procedures. The eccentric exercise protocol induced significant muscle damage and soreness, and reduced bench press and 30-s Wingate performance. Whey protein supplementation significantly attenuated post-exercise blood levels for biomarkers of muscle damage compared to water-only, with large effect sizes for creatine kinase and myoglobin during the fourth and fifth days of recovery (Cohen’s d > 0.80); pea protein versus water supplementation had an intermediate non-significant effect (Cohen’s d < 0.50); and no significant differences between whey and pea protein were found. Whey and pea protein compared to water supplementation had no significant effects on post-exercise DOMS and the fitness tests. In conclusion, high intake of whey protein for 5 days after intensive eccentric exercise mitigated the efflux of muscle damage biomarkers, with the intake of pea protein having an intermediate effect.